2025.02.04 (화)

  • 맑음동두천 -10.8℃
  • 맑음강릉 -7.0℃
  • 맑음서울 -8.9℃
  • 대전 -6.8℃
  • 맑음대구 -4.5℃
  • 맑음울산 -4.2℃
  • 광주 -3.7℃
  • 맑음부산 -3.7℃
  • 구름많음고창 -4.8℃
  • 제주 1.2℃
  • 맑음강화 -9.8℃
  • 맑음보은 -7.8℃
  • 구름많음금산 -6.3℃
  • 구름많음강진군 -2.4℃
  • 맑음경주시 -4.6℃
  • 맑음거제 -2.5℃
기상청 제공

산업종합

KAIST, AI로 우주용 전기추력기 개발·고성능 예측

원자력및양자공학과 최원호 교수 연구팀,
인공지능을 사용해 높은 정확도를 갖는
홀 전기 추력기 성능 예측 모델 개발


홀추력기는 스페이스X의 스타링크(Starlink) 군집위성이나 NASA의 사이키(Psyche) 소행성 탐사선 등과 같은 여러 고난이도 우주 임무에 활용되는, 플라즈마를 이용한 고효율 추진 장치로, 핵심적인 우주기술 중 하나다. KAIST 연구진이 인공지능 기법을 사용해 개발한 큐브위성용 홀추력기를 올해 11월에 예정된 누리호 4차 발사에서 큐브위성인 K-HERO에 탑재돼 우주에서 성능 검증을 진행할 예정이라고 밝혔다.

 

KAIST(총장 이광형)는 원자력및양자공학과 최원호 교수 연구팀이 인공위성이나 우주탐사선의 엔진인 홀 전기 추력기(홀추력기, Hall thruster)의 추력 성능을 높은 정확도로 예측할 수 있는 인공지능 기법을 개발했다고 3일 밝혔다.

 

홀추력기는 연비가 높아 적은 추진제(연료)를 사용하고도 위성이나 우주선을 크게 가속할 수 있으며, 소모 전력 대비 큰 추력을 발생시킬 수 있다. 이러한 장점을 바탕으로, 추진제 절약이 중요한 우주 환경에서 군집위성의 편대비행 유지, 우주쓰레기 감축을 위한 궤도이탈 기동, 혜성이나 화성 탐사와 같은 심우주 탐사를 위한 추진력 제공 등 다양한 임무에 폭넓게 활용되고 있다.

 

최근 뉴스페이스 시대에 접어들어 우주산업이 확장됨에 따라 우주 임무가 다양해지고 있고 이에 맞는 홀추력기 수요가 증가하고 있다. 각각의 고유한 임무에 최적화된 고효율 홀추력기를 신속하게 개발하기 위해서는 설계단계에서부터 추력기의 성능을 정확하게 예측하는 기법이 필수적이다.

 

그러나 기존의 방식들은 홀추력기 내에서 복잡하게 일어나는 플라즈마 현상을 정밀하게 다루지 못하거나, 특정 조건에 한정돼, 성능 예측 정확도가 낮은 한계가 있었다.

 

연구팀은 홀추력기의 설계, 제작, 시험의 반복 작업에 걸리는 시간과 비용을 획기적으로 줄이는 인공지능을 기반으로 한 정확도가 높은 추력기 성능 예측기법을 개발했다.

 

2003년부터 국내에서 전기추력기 개발 연구를 처음으로 시작해 관련 연구개발을 주도하고 있는 최원호 교수팀은 자체적으로 개발한 전기추력기 전산 해석 도구를 활용해 생성한 18,000개의 홀추력기 학습데이터를 기반으로 인공신경망 앙상블 구조를 도입해 추력 성능 예측에 적용했다.

 

양질의 학습데이터를 확보하기 위해 개발된 전산 해석 도구는 플라즈마 물리 현상과 추력 성능을 모델링한다. 전산 해석 도구의 정확성은, 연구팀이 국내 최초로 개발한 10개의 홀추력기로 수행된 100여 개의 실험 데이터와 비교해 평균오차가 10% 이내로 정확도가 높은 것으로 검증됐다.

 

학습된 인공신경망 앙상블 모델은 홀추력기의 설계 변수에 따라 높은 정확도로 단지 수초 내로 짧은 시간 안에 추력기 성능을 예측할 수 있는 디지털트윈 모델로 작동한다.

 

특히 기존에 알려진 스케일링 법칙으로는 분석하기 어려웠던 연료 유량이나 자기장과 같은 설계 변수에 따른 추력과 방전전류와 같은 성능지표 변화를 상세히 분석할 수 있다.

 

연구팀은 이번에 개발한 인공신경망 모델이 자체 개발한 700W급 및 1kW급 홀추력기에서 평균오차 5% 이내, 미 공군연구소에서 개발한 5kW급 고전력 홀추력기에 대해 평균오차 9% 이내의 정확도를 보여주었다. 이번 연구로 개발한 인공지능 예측기법이 다양한 전력 크기의 홀추력기에 폭넓게 적용할 수 있는 것을 입증했다.

 

최원호 교수는 “연구팀에서 개발한 인공지능 기반 성능 예측기법은 정확도가 높아 인공위성과 우주선의 엔진인 홀추력기의 추력성능 분석과 고효율 저전력 홀추력기 개발에 이미 활용되고 있다. 이 인공지능 기법은 홀추력기 뿐만 아니라 반도체, 표면 처리 및 코팅 등 다양한 산업에서 활용되는 이온빔 소스의 연구개발에도 접목될 수 있다”라고 밝혔다.

 

또한, 최교수는 “연구팀의 실험실 창업기업으로 전기추진 전문기업인 코스모비㈜와 함께 인공지능 기법을 사용해 개발한 큐브위성용 홀추력기는 올해 11월에 예정된 누리호 4차 발사에서 3U(30x10x10 cm) 큐브위성인 K-HERO에 탑재돼 우주에서 성능 검증을 진행할 예정”이라고 설명했다.

 

KAIST 원자력및양자공학과(우주탐사공학학제전공) 박재홍 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제적으로 저명한 인공지능 다학제 학술지인 ‘어드밴스드 인텔리전트 시스템(Advanced Intelligent Systems)’에 2024년 12월 25일에 온라인 게재됐으며, 저널 표지논문(front cover)으로 채택돼 혁신성을 인정받았다.

 

이번 연구는 한국연구재단 스페이스파이오니어사업(200mN급 고추력 전기추진시스템 개발)의 지원을 받아 수행됐다.
(논문 제목: Predicting Performance of Hall Effect Ion Source Using Machine Learning, DOI: https://doi.org/10.1002/aisy.202400555)